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Numerical methods for the analysis of the nonaxisymmetric stability of two-dimensional 
axisymmetric flows are discussed. The relative merits of a fully spectral approach are com- 
pared with methods which are spectral in one direction and finite difference in the other. The 
results are applied to the onset of waviness in Taylor vortices; it is shown that the methods 
described are capable of finding accurate eigenvalues for Taylor numbers up to fifty times 
critical. Cl? 1985 Academx Press, Inc. 

I. INTRODUCTION 

The physical problem which gives rise to the calculations described in this paper 
is the ffow of incompressible fluid between concentric rotating cylinders. 
Taylor-Couette flow undergoes a series of transitions as the rotation rate, as 
measured by the dimensionless Taylor number, is increased. 

The first transition, at Ta = Tu,, is generally from purely azimuthal flow to 
axisymmetric toroidal vortices; this is the transition first studied by Taylor [32]. 
These toroidal vortices have been studied by many workers using different means: 
weakly nonlinear expansions have been developed by Davey ES], Eagles [lo], and 
others; many numerical calculations have been performed, among them those of 
Meyer [22], Rogers and Beard [31], Meyer-Spasche and Keller [23], Jones 
[ 17, 181, and Booz [Z]; there is also a large literature, which has recently been 
reviewed by DiPrima and Swinney [7]. Most, but not all, of the theoretical work 
has used the infinite cylinder approximation. 

As the rotation rate is further increased, the toroidal vortices generally lose their 
axial symmetry, and become wavy at some critical Taylor number, Ta,. This trans- 
ition was first analysed theoretically using weakly nonlinear expansions by Davey, 
DiPrima, and Stuart [6], and was subsequently investigated by Nakaya [26] and 
Jones [17, IS]. 

In a previous paper [17] the author predicted a rapid rise in the critical Taylor 
number, Ta,, for the onset of waves as the radius ratio y is reduced below q = 0.78. 
This prediction has been confirmed by laboratory experiments, such as those of 
Cole [4] and Park [ZS]. Also calculations of the wave speeds near Ta, were in 
reasonable agreement with observations; see also King et al. [19]. However, the 
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work in [17] was limited by the fact that the numerical methods used only gave 
really reliable results for Taylor numbers < lOTa,. Since many interesting 
experiments on the wavy vortex transition have been done at higher Taylor num- 
bers than this, e.g., Lorenzen, Ptister, and Mullin [ZOJ and Cole [4], new 
numerical techniques are needed to explore these regimes. 

This paper contains a description of the numerical methods used in Jones [17], 
and compares them with a new method which can reach Taylor numbers substan- 
tially in excess of lOTa,. Since the agreement between theory and observation is 
generally rather good in Taylor-Couette flow, there is a need for a higher level of 
precision in the numerical calculations than is generally required for numerical fluid 
dynamics. Also, accurate calculations of the transition points serve as useful 
“benchmark” checks for time-dependent calculations such as those of Moser, Moin, 
and Leonard [24] and Marcus [21]. 

The numerical problem involved in finding Ta, and the corresponding wave 
speed, c, consists of two parts. First we must calculate the nonlinear axisymmetric 
Taylor vortices. The method used here was a spectral method, together with New- 
ton-Raphson iterations to solve the resuhing nonlinear algebraic equations. Details 
are given in Section 3. The second part of the problem is then to perform a linear 
stability analysis about the nonlinear states. This involves solving a two-dimen- 
sional eigenvalue problem, in the axial and radial directions, with prescribed boun- 
dary conditions. Since the &dependence for the eigenvalue problem is cceim(, the 
coefftcients are complex, and there are really two eigenvalues, Tu, and c, the wave 
speed. It is, however, generally more convenient (and in this problem more instruc- 
tive) to let Ta be a parameter and solve for the complex growth rate, B + io, and 
then adjust Ta until c = 0. This system is of sixth order in space, with three boun- 
dary conditions applied at each boundary. 

There are, of course, a great many different techniques for solving 2-D eigenvalue 
problems of this type. The particular features of this Taylor-Couette problem (and 
also of similar problems in fluid dynamics, such as the convection problem) are the 
high differential order and the non-Hermitian character of the problem; eigenvalues 
do not occur in complex conjugate pairs. We first consider how we are going to 
represent the scalar fields occurring in the problem. Three possibilities have been 
considered: spectral representations in the radial and axial directions, which we call 
an SS method, spectral representation in one direction and finite difference 
representation in the other, which we call an SF method, and finite difference 
representation in both directions, which we call an FF method. Finite element 
methods were not considered, although they may well prove to be competitive in 
these types of problems. For studying bifurcations in fluid dynamics SS methods 
have been used extensively (e.g., Clever and Busse 133, Nagata and Busse [125]), 
but FF methods have also been used (e.g., Fearn and Proctor [12]). The most suc- 
cessful method at the higher Taylor numbers found here was of mixed SF type. 

Having decided on the method of representation, we have to select the most 
appropriate formulation of the sixth-order system. The equations can be formulated 
in terms of two dependent variables, one equation of fourth order and the other of 
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second order. This can, in fact, be done in several different ways. This would appear 
to be the optimum formulation when using fully spectral methods (SS), where the 
fourth-order derivatives do not create too great a problem, and the need to 
minimise the order of the matrices is at a premium. With finite difference represen- 
tations, it was felt to be better to use three dependent variables involving only 
second-order derivatives. Details of how the equations are formulated are given in 
Section 2. 

We must ‘next decide on how we are going to find the eigenvalues from t 
resulting matrices. An SS method leads to dense matrices; but if the expansion 
functions are well chosen, the order of the matrices will be much smaller than that 
for finite difference methods of equivalent accuracy. At low Taylor number, the 
eigenfunctions are extremely smooth, so that SS methods can give good results even 
when the truncation is very severe; we can then use the LR algorithm to lind all the 
eigenvalues (and eigenvectors if required) of our comparatively small dense 
matrices. We can then select the most unstable (or least stable) eigenvalues an 
follow these up to higher values of the Taylor number. 

SF and FF methods lead to matrices of varying degrees of sparseness; inverse 
iteration (e.g., Wilkinson [33]) was the basis of the most successful method tried 
here. The numerical evidence suggests that the eigenvalues for this problem are 
always well separated in the complex plane: as we proceed by slowly varying the 
parameters, good estimates are usually available for the trial eigenvalue. 

When sparse matrices are involved, the choice of sparse matrix solver for perfor- 
ming the LU decomposition is important. In the SF method, the sparsity pattern 
consists of dense rectangular blocks down the leading diagonal, The so-called “fron- 
tal” methods (e.g., Duff [9]) were found to be very effective. The FF methods lead 
to a more complicated sparsity pattern, which is not so easy to take full advantage 
of; this is particularly significant if we wish to vectorize the inner loops of LU 
decomposition (Duff and Reid, [S]). This is the main reason why we were unable 
to make FF methods competitive with SF methods for this problem. 

The decision between SS methods and SF methods is more complicated. 
Although the flows are extremely smooth at low Taylor number, at higher Ta 
boundary layer structures begin to develop (Batchelor [ 11). A similar situation 
occurs in Rayleigh-Benard convection (Roberts [29, 301). For the Taylor case, 
Batchelor’s argument gives the boundary layer thickness, 6, - Tu-“‘~ at large Ta. 
This scaling applies both to the boundary layers near the cylindrical sidewalls and 
also to the internal boundary layers which develop between each toroidal cell (e.g., 
Fasel and Booz [ 111). In consequence, as Tu increases, more spectral functions are 
required to maintain the resolution. Naturally, the number of finite difference mesh 
points has to be increased too; indeed, if we denote the number of spectral functions 
required in each direction by Ns and the number of finite difference mesh points by 
N,, then N&V, shows no tendency to increase. Indeed, in the radial direction the 
zeros of suitable spectral functions are concentrated in the boundary layers, so that 
Ns/NF is likely to decrease as Ta is increased. We might therefore suppose that the 
fully spectral methods would be much preferred at higher Ta. However, for the SS 



324 C. A. JONES 

method, the time taken for inverting the full matrix grows very rapidly with Ns 
(-Ng), whereas for the SF method, the time taken for inversion grows at the less 
rapid rate of NgN,. In consequence, although SS methods involve considerably 
smaller matrices at higher Ta than SF methods, SF methods were found to con- 
sume less CPU time than SS methods to achieve the desired accuracy. At low Tu, 
the Ns, required to give accurate solutions may be quite small, so the penalty for 
inverting full matrices is correspondingly less. We find that SS is then preferred to 
SF at low Ta. The crossover point, at which both methods are comparable, will 
depend on the computer used and the budget available (see Section 5). 

When spectral representation is used, we must decide on the set of functions to 
be employed. In this work, Chebyshev polynomials are used for the nonperiodic r- 
direction, and trigonometric functions are used in the periodic z-direction. Choices 
other than Chebyshev polynomials have been used by other authors, e.g., Clever 
and Busse [3] used the Chandrasekhar-Reid functions, but the uniform spacing of 
the zeros of these functions near the boundaries makes their convergence properties 
less effective; see Orszag [27]. Another possibility is expansion in Legendre 
polynomials (Hussaini, Salas, and Zang [14] and Zang, Wong, and Hussaini [34]) 
which are as convenient to use as Chebyshev polynomials, and also have a high 
density of zeros near the boundaries. 

The detailed comparison of the results of the computations with the laboratory 
experiments is given in Jones [16]. 

2. FORMULATION OF THE EQUATIONS 

In vector form the incompressible Navier-Stokes equations are 

au t+(u.v)u= -hp+vv2u (2.1) 
P 

v.u=o. (2.2) 

In cylindrical polar coordinates (r, 4, z) a natural formulation of the nonlinear 
axisymmetric Navier-Stokes equations is in terms of the stream-function I/?, defined 
so that 

( u,, U@, UJ = 
( 

1 a* 1 a* - --) u+, -- 
r aZ r dr 1 

. 

Then the potential vorticity, 2, is defined by 

z7 -ldE!!-EL 
r ar r ar r2 az2' 

Before the onset of Taylor vortices the Couette velocity field is azimuthal, 

” = d(R, + R,) 

(2.3) 

(2.4) 

(2.5) 
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where R, and Rz are the radii of the inner and outer cylinders, ye = RJR,, 52, and 
Q2, are the angular velocities of the inner and outer cylinders, d = R, - R,, and 
,U = Q,/Qr . In the case of counter-rotating cylinders, p is -IJ~. The results reporte 
here concern only the case p = 0, i.e., the outer cylinder is at rest. 

We define u, the departure of the azimuthal flow field from the basic Couette how 
field, by 

The equations are then nondimensionalized by using these transformations foor 
the dependent variables 

where v is the kinematic viscosity. 
For the independent variables we define X, < such that z = jd and r = R, + xd, so 

the cylinders are at x = 0 and x = 1. We introduce P such that 
r^=q+x(l-q)=(l-y)r/d. 

The axisymmetric Navier-Stokes equations then become 

1 a la+ 1 f3yz 
----------T- 3 ax p ax p ay 

(2.7) 

a+ az a+ az+ gk au 1 _ (1 -p) y2 y(~ -+) v ----- -- 
ax ai ai ax l-vair i cr; - PL) f2 - 4Y2 -PI 1 

i 

2 

=’ ap 
!?2+2’2 (Up) 

axpax 1 v.91 

where 

Ta=2Qfd4(q2-I’) 2Q,d3(0,R;-Q;2,R;) 
(1-y2)v2 = v*(R, + RJ 

Another commonly used set of dimensionless parameters are the inner and outer 
Reynolds numbers, defined by Ri =O,R,(d/v) and I?,= Q,R,(dJv). These are 
simply related to Tu and II, since 

Ri= R,= 
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In the case where the outer cylinder is at rest, it is common to .define Ri = Re as the 
Reynolds number. The boundary conditions to be applied are 

$2&O on x=0,1 (2.10) 

and $, v are periodic in [, with period 271/a. The system is of sixth order. 
Once the steady-state axisymmetric equations (2.7) to (2.9) have been solved, we 

can examine the stability of the solution by solving the small disturbance equations 

&I 
at+(uo‘v)u’+(u’-v)u”= -hp’+vV2u’ (2.11) 

P 

V.u’=O. (2.12) 

There are various ways of reducing these vector equations to a form suitable for 
numerical solution, depending on the numerical method to be employed. For 
axisymmetric disturbances, it is convenient to formulate the equation in stream- 
function and vorticity form, i.e., to follow the same procedure as led to Eqs. (2.7) to 
(2.9). However, for nonaxisymmetric disturbances we have no stream-function and 
a different procedure must be adopted. If the numerical method is of SS type, it is 
important to reduce the number of dependent variables to a minimum in order to 
minimise the order of the resulting matrices. Since differentiation is then a com- 
paratively simple and accurate procedure, the high-order derivatives resulting from 
eliminating dependent variables cause no problems. 

The nondimensionalization of the asymmetric perturbation equations follows 
that of the axisymmetric equations; 

VU’ 
I 

&+I; 
d 

u;+!5. 
p’v2 

d’ 
u>-&,R,u:,; p’+-- 

d2 ’ 

are the scalings for the dependent variables: we also use t -+ (8/v) t for the time 
scale, and 4 -P (2fq2 - p)/( 1 - q2) Ta)i/* 4 for the azimuthal angle. If disturbances 
are cc eim+, m an integer, then in the stretched coordinate 6, disturbances are 
a eik4, where k=m{Ta(l-$)/2(~2-~)) . I/’ k then has discrete values, but not 
necessarily integer values. The introduction of k rather than m may seem to be per- 
verse, but in the narrow-gap limit q --f 1 it is k, and not m, which remains finite: so 
introducing k permits us to solve the equations for q = 1. We also note that u’ and 
p’ are complex quantities. 

When SS methods were used, the two dependent variables 8 and x were defined 
by 

u=vxei+vxvxx3, i being the unit vector in the r-direction, (2.13) 
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an expansion related to separation into toroidal and poloidal fields. An advantage 
of this procedure is that the equations derived are nonsmgular in the axisymmetric 
limit k-~ 0. The pressure is eliminated by taking the curl of the momentum 
equations. The two equations are derived by taking the r-component of the curl of 
Eq. (2.13) and the r-component of curl2 of Eq. (2.13). The boundary conditions are 

onx=O, 1 (2.14) 

together with periodic conditions on x and 0 in the c-direction. 
When SF methods are used, we want to avoid fourth derivatives if possible. We 

therefore formulated the equations in terms of u:, u:, and p’, the pressure pertur- 
bation. We then split the sixth-order system into three second-order systems. The 
divergence of the momentum equation (2.11) gives 

V’p’ = -2 div[ (u’ . V) II“] (2.15) 

using the identity div[ (u”. V) u’] = div[ (u’ . V) u“]. We eliminate z& using the con- 
tinuity equation, and take the radial and vertical momentum components as the 
other two equations. We obtain 

. O’ 2i 
~+(“~.V,)u:+(u~.v~)U:f~-- m u; VI u’ 

I apf = ----$-v 
P ar L 

v2u~-~+2vL.u’ 
r 1 (2.16) 

~+(u".vI)u~+("~.vI)uD+--- imu; 24: _ 1 ap’ 
---+ vV2u’ 

r pa2 *. (2.17) 

Here V, denotes the operator (d/i%, a/&r) and V, . u’ denotes 
(l/r)(a/&)(ru:) + &@z. We note that as (2.16) contains terms in l/m, only non- 
axisymmetric modes can be treated by this formulation. We cast (2.15), (2.16), and 
(2.17) into dimensionless form using the same scalings as before. The boundary 
conditions are 

on both the inner and outer boundaries, together with periodic conditions in the <- 
direction. 
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3. METHOD USED FOR AXISYMMETRIC EQUATIONS 

We now briefly describe the technique used to solve Eqs. (2.7) to (2.9) (see also 
[17]). The method adopted was fully spectral, that is, of SS type. We write 

n=l m=O 

N M 

v= 1 c v,,T;(z) cos na[ 
n=Om=O 

(3.1) 

where T:(x) is the mth Chebyshev polynomial defined on 0 < x 6 1. We eliminate 2 
from Eq. (2.8), using (2.7), so no expansion is required for 2. N and M are the 
truncation parameters in the [ and x directions, respectively. We now must find the 
(M+ 1)(2N+ 1) coefficients $,, and v,,. Substituting (3.1) into the boundary con- 
ditions (2.10) gives 6N+ 2 equations. The remaining (M- 3) N+ (M- l)(N+ 1) 
equations can be found by collocation. This method is simple to program and is 
particularly suitable when the coefficients are complicated. 

For the tj equation (2.8), we set up an (M- 3) x N mesh, with mesh points at x- 
values given by the zeros of T$- 3(x) and [-values given by the zeros of 
cos(N + 1) a[. (Note that some authors use the zeros of U:(x), the Chebyshev 
polynomials of the second kind, in preference to those of T,*(x).) We then require 
that Eq. (2.8) be satisfied exactly at each of these (M- 3) mesh points, thus obtain- 
ing (M - 3) N equations. 

In the program, the equations are solved by Newton-Raphson iteration, so that 
at each iteration, current estimates of tirnn and u,, are available. So at each iteration 
the task is to lind the residuals at each mesh point, and aIso the partial derivatives 
of these residuals with respect to the unknowns $,, and u,,. We first differentiate 
the Chebyshev and Fourier series using the appropriate algorithms (e.g., Fox and 
Parker [ 131) and then evaluate $, u, and its derivatives on the mesh points. Then 
the various terms in the $ equation are found (multiplications being done in the 
physical space) to obtain the residuals which have to be reduced to zero. Because 
the only nonlinearities are quadratic, it is straightforward to obtain the partial 
derivatives, of the residuals with respect to the unknowns. This means that the 
Jacobian matrix required for the Newton-Raphson iteration can be found 
explicitly, rather than indirectly using numerical differentiation. The advantage of 
the collocation method is that while the differentiations are done in the function 
space (where it is simple and accurate), the multiplications are done in the physical 
space. The procedure for the v equation is similar, except that we set up an 
(M- 1) x (N + 1) mesh on which to calculate the residuals. 

A disadvantage of the collocation procedure is that one is restricted to a square 
truncation scheme such as (3.1); this means that some of the coefficients $m, and 
V l7l” corresponding to large m and large IZ are extremely small, and could well be 
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omitted with considerable saving in time and very little loss of accuracy. We would 
like to replace (3.1) by 

N M(n) 
$= C C rl/m,TiXx) sinnd 

?I=1 ??I=0 

AJ M(n) (3.2) 
v = c c v,,Tz(x) cos nai: 

n=O m=O 
where M(n) is a decreasing function of n, following the ideas of Clever and Busse 
II31. 

The following definition of M(n) was found to give reasonable results: 

M(n)=NT+5-n, O<n<NT-4, 

M(n) = 9, NT-3<n<NT. 
(3.3) 

We can no longer simply use the collocation method with this truncation scheme. 
Fortunately the coefficients are independent of z, and only quadratic nonlinearities 
are present, so it is not difficult to use a Galerkin procedure in the z-direction. 
still use collocation in the x-direction, setting up appropriate meshes on the interval 
0 d x d 1, but we do not set up a mesh in the z-direction. Instead the residuals are 
constructed by equating coefficients of sin ncc[ to zero for 1 <n $ N. When terms 
containing products of sines and cosines are encountered, these are expressed as 
sums of trigonometric functions, e.g., we write sin ma5 cos na[ as 
i(sin(m + n) a[ + . sm(m -n) LX[). Any term for which m +n > N is ignored. This 
procedure is more difficult to program than a straightforward collocation 
procedure, but the linal product is slightly better. 

With a square truncation, the Jacobian matrix for the Newton-Raphson iteration 
is of order (M+ 1)(2N+ 1)x (Mf 1)(2N+ 1). The maximum truncation 
parameters, A4 and N, that are possible are, of course, machine dependent. The 
calculations reported here were performed on an IBM 370/168 using the FOR- 
TRAN H extended optimizing compiler. In order to run sufficiently fast to allow 
reasonable coverage of the parameter space, we cannot allow the Jacobian matrix 
to exceed 1 megabyte, with each real taking 8 bytes of storage in double precision. 
We therefore have an effective constraint of 

(Mf 1)(2N+ 1)<362. (3.4) 

lM= 14, N= 11 or M= 16, N = 10 were commonly used truncations. The program 
then takes typically about 5 minutes to obtain an accurately converged Taylor vor- 
tex solution. 

To evaluate the performance of this technique we tabulate two quantities for a 
wide range of Taylor numbers and truncation parameters. A natural quantity to 
examine is the torque of the solutions; on the inner and outer cylinders we have 

Ginner = Go . --- 
’ 

G 
0”tCI (3.5) 
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TABLE I 

Ta 
MxN 3,500 7,500 15,000 30,000 45,000 60,000 90,000 

12x4 2.813012 3.5880 4.1788 4.7326 
12x6 2.813012 3.5879 4.1860 4.7893 
12x8 2.813011 3.5879 4.1860 4.7957 
12x10 2.813012 3.5879 4.1860 4.7959 
12x12 2.813012 3.5879 4.1860 4.7958 
12 x 14 2.813012 3.5879 4.1860 4.7958 
8x 10 2.816624 3.6037 4.2226 4.8774 

10x10 2.813194 3.5859 4.1782 4.7787 
12x10 2.813012 3.5879 4.1860 4.7959 
14 x 10 2.813015 3.5878 4.1866 4.7991 
16x 10 2.813015 3.5878 4.1864 4.7996 
16x14 2.813015 3.5878 4.1864 4.7996 

5.1652 
5.1911 
5.1934 
5.1934 
5.1934 
5.2700 
5.1670 
5.1934 
5.1990 
5.2009 
5.2010 

5.4933 
5.5012 
5.5019 
5.5019 
5.5257 
5.4645 
5.5012 
5.5087 
5.5119 
5.5126 

5.9411 
5.9710 
5.9756 
5.9761 

5.9154 
5.9710 
5.9833 
5.9884 
5.9940 

@I” 

12x4 4.23304 17.7817 32.3693 51.2371 
12x6 4.23355 17.9540 33.4476 54.3842 69.4540 
12x8 4.23356 17.9683 33.6420 55.2988 71.2568 84.2016 104.9152 
12 x 10 4.23356 17.9693 33.6732 55.5415 71.8396 85.1992 106.8896 
12x 12 4.23356 17.9694 33.6777 55.5996 72.0120 85.5309 107.6370 
12x14 4.23356 17.9694 33.6783 55.6124 72.0586 85.6325 107.9008 
8x10 4.27268 18.1675 34.8922 60.9544 84.1644 105.8773 

10x10 4.23776 17.9960 33.8165 56.3302 73.8213 88.6912 113.4971 
12 x 10 4.23356 17.9693 33.6732 55.5415 71.8396 85.1992 106.8896 
14x10 4.23363 17.9706 33.6760 55.6582 72.2769 86.1466 109.2237 
16x10 4.23363 17.9704 33.6752 55.6594 72.2827 86.1107 108.9386 
16x 14 4.23363 17.9705 33.6805 55.7320 72.5085 86.5593 109.9896 

n The torque, G, is given as a function of Taylor number, Ta, for the case q = 0.5, p = 0, tl= 3.1631. 
The truncation levels are given as Mx N referring to (3.1). 

b As above, but tabulating the radial velocity (in the dimensionless units) at the point z = 0, x = $. 

where 

Go= 
2nR; hvpQ, 

d , 

h being the length of the cylinders and p the fluid density. In a steady state we 
should have Ginner = Goute,, so any differences are due to truncation error. In Table 
I, we quote the average value of Ginner and G,,,,, as the accepted value (the differen- 
ces are always very small). Comparison with some of these calculations with 
previous calculations and fluid experiments is given in Jones [17]. The torque, 
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being an averaged quantity over the dominant modes, is not a very stringent test of 

the accuracy of the solutions, so we also quote the radial velocity at the point z = 0, 
x = 1 in Table I. This point is situated between adjacent toroidal cells; the radial 
velocity is nearly a maximum at this location. 

It can be seen from Table I that for low Tu (Tac,it g 3Q99) both the given quan- 
tities converge very rapidly with M and N, as we expect with fully spectral methods. 
It is also clear that significant errors are occurring at the higher values of TQ, 
indicating the increased resolution requirement at higher Ta. It would be of some 
interest to know how rapidly M and N must increase with Ta in order to maintain 
constant accuracy. Unfortunately, to get a definitive answer to this requires com- 
putation at large Tu (to get to the asymptotic regime) and with larger M and N 
than the resources available here permit. However, the following argument is con- 
sistent with the data given in Table I. In the x-direction, the boundary layer scales 
as 6 - Tu-~‘~. The intervals between zeros of the Chebyshev polynomials scale with 
Me2 in these boundary layers, so to maintain constant resolution we need 
M- TLZ”~. In the z-direction we have internal boundary layers between the vortices, 
again with 6% Ta- . ‘I4 The periodic functions used to represent the z-dependence 
have zeros which are uniformly spaced, so to maintain resolution in the internal 
boundary layers we need N- Ta’? The scaling N- Tall4 fits the Table I data quite 
nicely. The M- Ta “* law is not so clear (a power between $ and $ gives a better fit), 
but this may be simply because we are not yet in the asymptotic regime. The 
relative errors in the eigenvalues due to the M x N truncation are given in Section 5. 

4. METHODS USED FOR THE STABILITY EQUATIONS 

(a) The SS Method 

We now consider methods for solving (2.11) and (2.12), where the axisymmetric 
velocity fields u” have now been found numerically, and are available in a con- 
venient form, such as a Chebyshev and Fourier representation. For a fully spectral 
method, the representation (2.13) is convenient. We write, for out-of-phase modes, 

0 = 2 ‘f 8, T:(x) cos ncl< eim”eim’+“’ 
n=O i=O 

x = f f xi,, T,*(x) sin na[ eimdeio’+or, 
(4-l 1 

n=l i=O 

In-phase modes (see [17]) can be treated similarly. The boundary conditions give 
4N equations on x and 2(N + 1) equations on 8. As with the axisymmetric 
equations we use collocation in the x-direction and the Galerkin procedure in tbe z- 
direction. Thus, inserting the expression (4.1) into Eqs. (1.131, (2.11), and (2.12) 
results in N(M- 3) + (N+ l)(M- 1) equations of the form 

(a+io) L,a=L,a (4.2) 
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where the single vector a is made up by running the unknown 19, and xi,, together. 
At this stage, we still have N(M+ l)+ (N-l- l)(M+ 1) unknowns, so we use the 
boundary conditions to eliminate the elements of a corresponding to x~-~,~, 
XM-22,n~ ~~-i,~, x~,~ for n = 1, N and OM-l,n, 6,, for n =O, N. Then (4.2) is 
reduced to a square system in which L, is a nonsingular matrix. Equation (4.2) was 
solved by inverting L, and finding L;l L,, and then using a standard package 
(routine F02AJF of the Numerical Algorithm Group Library) which reduces L;l L, 
to Hessenberg form and then applies the LR algorithm (see, e.g., Wilkinson [33]) 
to find all the eigenvalues. The matrix L, is a dense, complex matrix. L, is block 
diagonal with 2N x 2N blocks. Storage (and time) restrictions are therefore tighter 
on the stability equations than they are on the axisymmetric program. With each 
element of the matrices requiring 16 bytes, the l-megabyte limit is now the con- 
straint 

(M+ 1)(2N+ 1) 6 256 (4.3) 

and in practice values of Mx N of 12 x 9 or 11 x 10 were possible. For Taylor num- 
bers d 5Tu, more rectangular truncations, such as M = 14, N= 6, gave better 
results. Details are given in Section 5, Table II. 

The computational time for the SS method is -M3N3 as A4 and N become large. 
This asymptotic behaviour would hold, even if a different method, such as inverse 
iteration, were used to find the eigenvalues. 

(b) The SF Method 

As can be seen from Table II, the results of the SS method become insufficiently 
accurate to determine the stability boundary reliably for Tu~24,OOO at q = 0.77. As 
there are a number of interesting experiments on the onset of wavy vortices in long 
Taylor apparatuses conducted at Ta > 24,000 (e.g., Cole [4], Park [28], Lorenzen, 
Plister, and Mullin [20]) it is of interest to develop methods for finding the eigen- 
values at higher Taylor numbers. 

Any effective method based on a local approximation, such as finite differences, 
must take advantage of the sparsity pattern of the associated matrices. There are 
two reasons why this is particularly true for this type of problem: firstly, the high 
differential order (sixth) naturally favours global methods, where differentiation is 
easy and accurate, to local methods such as finite differences. Secondly, the well- 
known rapid convergence properties of Chebyshev polynomials (and Fourier 
representation for periodic functions) means that considerably more mesh points 
are needed than expansion functions. 

At Taylor numbers of the order of 50,000 more than twice as many mesh points 
were required in the z-direction as Fourier modes in z to achieve comparable 
accuracy, even though a fourth-order-accurate method was used. Our experience 
also indicates that the same is true in the radial direction, i.e., more than twice as 
many mesh points are needed as Chebyshev polynomials. In consequence, it 
required a considerable amount of program development before any method 
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involving finite differences was found that was superior to the SS method described 
in Section 4(a). 

Several FF methods were tried, but none proved to be competitive with the SF 
method described below. The formulation used for these attempts was that of the 
three coupled Poisson-type equations (2.15) to (2.17) and the method adopted was 
inverse iteration. The complex matrix equations which have to be solved are close 
coupled in the three variables, and are highly asymmetric. It is believed that this IS 
the reason why the iteration methods used to solve the matrix equations failed to 
converge satisfactorily. Direct methods of solution did produce results, but none of 
the methods tried led to an FF method that was competitive with the SF method 
described below. Two direct methods were considered for solving the FF equations, 
the variable band method (Jennings [IS], Duff [9]) and the use of the Markowitz 
pivoting strategy with indirect addressing (e.g., Duff [9]). The variable band 
method takes advantage of the sparseness induced by the local approximation in 
one direction, but not in the second direction. Infill of zeros occurs as the 
elimination proceeds. The use of a pivoting strategy is designed to counteract this 
problem, and it would probably be superior in the limit of very large numbers of 
mesh points. However, for this problem (mainly due to the complicated nature of 
the equations) the overheads incurred by the indirect addressing mean that the 
pivoting strategy would not show its superiority until the mesh size was about 
40 x 40 by which size the CPU time consumed is unacceptably large. It should also 
be noted that the indirect addressing required by the pivotal strategy makes it less 
attractive for use on a machine with vector capabilities. 

Since the variable band method was found to be the most advantageous method 
of solving the FF equations, there is no longer any point in using a local rather 
than a global approximation in one direction; if the zeros are going to be filled in, 
we may as well replace them by nonzeros which greatly improve the accuracy of the 
results! So we are naturally led to using SF methods. 

In the SF method selected, we represented the axial direction by finite differences 
and the radial direction by Chebyshev polynomials. The decision to use the finite 
differences in the z-direction, rather than in the r-direction, was motivated by the 
need to examine disturbances which have an axial wavelength longer than the axial 
wavelength of the axisymmetric vortices; these disturbances are important for some 
radius ratios (Jones [16], Cole [4]). Modes of this type have a higher effective 
resolution requirement in the z-direction; since computational cost varies only 
linearly with the number of points in the z-direction, it is better to put the mesh 
points in the direction which has the most demanding resolution requirement. An 
approximation to the desired eigenvalue at any given Taylor number is available 
either from a previous run at a lower Taylor number or from tbe method describe 
in Section 4(a). Since the eigenvalues are well spaced out in the complex plane (we 
know this from our studies with the SS method, where the LR algorithm finds all 
the eigenvalues of the matrix), inverse iteration is an appropriate method to find the 
eigenvalues. We represent 
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up’ = 2 i&T,*(x) 
i=O 

u(j) = f. w,-T?(x) z (4.4) 

p”‘= 5 P,TT(x) 
i=O 

where u!j), u$j), and p(j) are the values of u,, uZ, and p at thejth mesh point in the [- 
direction. We substitute these expressions into Eqs. (2.15) to (2.17). All differen- 
tiating in the x-direction is then done as usual directly on the Chebyshev series: 
derivatives in the z-direction are represented by second-order centred finite differen- 
ces, so aUi/az 1 z =Zj is represented by (U,, i - U,- 1 j/262 and a2 Ui/i3z2 1 z = =, by 
(Uij+,-2Uij+ Uij-,)/s z2, etc. The Chebyshev series are evaluated on mesh points 
in the x-direction corresponding to the zeros of the appropriate Chebyshev 
polynomial. The condition that the equations be satisfied exactly at these mesh 
points leads to linear simultaneous equations of the form 

A,x=(o+io) 6,x (4.5) 

from Eqs. (2.16) and (2.17), and equations of the form 

A,x=O (4.6) 

from (2.15) and from the boundary conditions. Here x is a vector whose com- 
ponents are made up of running the coefficients U,, Wq, and P, together. Since 
(4.5) and (4.6) must be solved simultaneously we run the matrices A, and A2 
together to obtain the eigenvalue problem 

Ac2)x = ABx. (4.7) 

Here B is singular; it has been constructed by adding an appropriate number of 
zeros to B,; the superscript 2 on the matrix A denotes that it has been derived 
using second-order finite differences. 

For out-of-phase modes, U, =p = 0 at 5 = 0, so if the mesh points in the z-direc- 
tion run from 1 to N (corresponding to c= 0 and [= n/a, respectively), then 
U, = U, = PiI = Pi, = 0 for all i = 0, M. We use Eq. (2.17) to derive an equation 
determining W, on the [ = 0 and c = 27+x boundaries; from the periodicity, we can 
set dPi,/dz = (Pi2 - P,)/26z = P,/dz: other derivatives are treated similarly. So A@) 
is a square matrix of order (M+ 1)x (3N-4) by (M+ 1)x (3N-4). We order the 
U,, W,, and P, inside x in such a way that the matrix Ac2) has the block form of 
Fig. 1, where each block aii is a dense square block of size (3M+ 3) x (3M+ 3) 
except for the end blocks, which are smaller. 
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In the inverse iteration method, we choose an initial guess for the eigenvalue, 
a, + io, = /I,, and perform the following iteration scheme: 

(A(2)-&J))yi+l=Bxi. x~++‘+l/l/y’+~j/, 9 Cd.81 

The normalisation is not very important; for the work described here, the coef- 
ficient of T;(x), in U, evaluated at [ =O, was set to 1. This coefficient is always 
comparatively large for a wavy mode. We also chose an initial guess, x0; again, this 
choice is not very crucial; it is, however, important to make & as good an estimate 
for the eigenvalue as possible. As i + co, xi converges towards that eigenvector 
whose eigenvalue ,? gives II - 1, j the smallest value. Further, XL+ ‘/yh+ r -+ r, a com- 
plex constant, and the eigenvalue corresponding to the converged eigenvector is 
given by L = .& + r. No difficulties are caused by A (*I - &B being nearly singular if 
/2, is an accurate guess. The matrix A (‘) - &, B has a structure as in Fig. 1. In order 
to perform the iteration scheme (4.8) we need to decompose A(*) - & B into EIJ 
form by Gaussian elimination. 

The algorithm used for this decomposition was as follows: at the ith stage, block 
a,,+ r has been reduced to zero, so we eliminate ai+ l,i and the lower triangle of 
ai+ 1,i+ 1 using as pivots elements from the block aji. This involves subtracting 
elements of u,,~+~ from elements of aj+ l,i+ i. It was found not to be necessary to 
choose pivots from block Q,,~+ i. At each stage in the elimination, the pivot element 
chosen was that element of largest modulus in the appropriate row in block a+ All 
calculations were done in double precision complex arithmetic. As each block is 
completed, the triangularised aii and the still square ~+r are passed out of main 
core storage, and the next blocks brought in so the total amount of core storage 
required is governed by the size of each block, and not by the size of the whole 
matrix A(*). This method of elimination is sometimes referred to as the “frontal” 
method (e.g., Duff [IS]). 
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The LU decomposition is the most time-consuming part of the program to find 
the eigenvalue, even though it is only done once: the operation count is propor- 
tional to M3N for large M and N. This compares with M3N3 for the SS method 
described in Section 4(a). It should be noted that no indirect addressing is required 
for the inner loop of the elimination procedure, so the algorithm is likely to be par- 
ticularly suitable for a machine with vector capabilities, although all the 
calculations here were done without such facilities. Once the LU decomposition has 
been done, it is merely a matter of back-substitution to perform the iteration (4.8), 
even from a rather arbitrary initial guess for x0, eight iterations are usually suf- 
ficient to obtain a well-converged solution; the eigenvalues are well spread out in 
this problem. Each iteration requires the decomposed form of A(*) - A, B to be 
brought in and out of main core storage: the operation count here is proportional 
to M*N, but nevertheless this is a potential bottleneck. However, on the IBM 
370/168 the LU description took about three times as much time as doing eight 
iterations with the decomposed form for the values of M = 16 and N = 41 which 
were used for many of the runs. 

The eigenvalue, A, obtained by this method is only accurate to second order in 
62, because A(‘) has been obtained by second-order finite differences. We could con- 
struct Ac4) 2 the matrix corresponding to using the fourth-order centred difference 
approximations 

dy 
dz z=o 

=Yl -Y-1 
262 -~(Y2-51+2Y-~-Y-*)+o(6z4) 

&Y 
dzz- 

=YdYo+Y-l 
(4.9) 

Z-O 6Z2 
&(Y~-~Y~+~-Yo-~Y-,+Y-,)+WZ~). 

If we did this, the form of Fig. 1 would be changed to having live blocks in each 
row instead of three, with a considerable increase in the work required to do the 
LU decomposition. It is, however, possible to find the eigenvalue so that the error 
is 0(6z4) without doing any LU decomposition other than the decomposition of 
A(*) - lo B. This is done by using perturbation theory based on the assumption that 
the second-order eigenvectors are reasonably close to the true eigenvectors. We let 

A(4) = A(*) + A’“) (4.10) 

so that A(“) is a correction matrix. If we proceeded to solve the fourth-order 
problem directly, we would end up with a fourth-order eigenvector X(*)+X(~) 
satisfying 

[A’2’+A(C)-20B](x (21 + x(C)) = (+*) + ,(C)) B(X’*’ + x(C)). (4.11) 

The essential step in the method is to ignore the terms A~“~x~“~ and r(c)Bx(c) in 
(4.11), which are 0(&z“), in comparison with the other terms involving corrections, 
which are 0(6z*). We start by solving the second-order problem as above, so we 
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have an LU decomposition A (‘) -&B, and an eigenvector x(‘) and eigenvaiue 
a, + r@). so 

(A@’ - a, B) x(2) = ,(2)Bx’2) (4.12) 

Since we have the LU decomposition of A (2) - A0 B E LU, we can solve for the 
adjoint eigenvector y (2) by means of the inverse iteration procedure 

zi+ ‘LU = yiB; y’+ 1 = z’+ l/l/$+ 111 (4.13) 

so that the adjoint yC2) satisfies 

Y(2)(A(2) - &, B) = y(2)y(293. (4.14) 

Finding the adjoint requires only back-substitutions, and not a new LU decom- 
position: the work required is therefore asymptotically O(M2N). The eigenvalue 
obtained from the adjoint problem is the same as that obtained by the original 
problem (which provides a useful numerical check), although the eigenvector y@) is 
quite different from x . (2) We now use the identity 

Y(2)[A(2) + A’“‘_ & B](X’2’ +x(d) = y(2+.(2) + ,tC)) B(X(2) + x(C)) (4.15) 

which, using (4.12) and (4.14), reduces to 

Y2A(c)X(2) + y(2)A(C)x(4 = r(C)y33X(2) + y(2+.(C)Bx(C). (4.16) 

Neglecting x(‘) compared to x(*) (in the limit 6z 4 0 it is O(Sz2) smaller), 

+I _ yc2)Acc)xc2) 
- y’33X’2’ + O( 6z4) (4.17) 

so that A. = 11, + rC2) + r(‘) is an eigenvalue with error only O(6z4). Since the work 
done to calculate (4.17) is comparatively small, the only significant extra work done 
is the calculation of yC2), via (4.13). The time taken for this is approximately the 
same as for the iteration scheme (4.8), which is typically only one-third the time 
taken to perform the LU decomposition. We thus obtain a considerable 
improvement in the accuracy of the eigenvalue at comparatively little com- 
putational cost. 

5. PERFORMANCE OF THE ALGORITHMS FOR THE STABILITY PROBLEM 

The quantities that are usually measured in fluid experiments are the critical 
Taylor number, Ta, for the onset of unstable waves (where the real part of A = 0) 
and the wave frequency at onset. The accuracy with which these can be determined 
numerically depends on how accurately we can measure the eigenvalue, so we con- 
centrate on this quantity. The form of the eigenfunctions is of interest, but to date 

%1/61/2-10 
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TABLE II” 

Ta ? M N u 0 

12,000 0.78 12 9 -0.25 -59.51 
12,000 0.78 14 7 -0.36 - 59.68 
12,000 0.78 15 6 -0.56 - 59.53 
12,000 0.78 11 10 -0.27 - 59.60 
24,000 0.77 14 7 -0.53 -78.21 
24,000 0.77 15 6 1.09 - 77.46 
24,000 0.77 12 9 0.47 - 77.45 
24,000 0.77 11 10 0.23 -79.15 

“The eigenvalue, (r + io, is given for various truncations at the two points Tu= 12,000, q =0.78, 
a==3.13, n=O and Ta=24,000, q=O.77, cc=3.13, and p=O. 

the comparison here with observations is only qualitative, so the need for high- 
accuracy eigenfunctions is not so pressing. We therefore concentrate in this section 
on the accuracy of the eigenvalues. In addition to quoting the wave frequency 
measured on the viscous time scale, we also give the dimensionless phase speed, 
P.S. = co/m&?, . When the gap between the cylinders is narrow, this is close to 4, but 
in wide-gap cases the phase speed can fall well below this value. 

The purpose of this section is to estimate the errors incurred by truncating the 

TABLE III” 

MxN NX NZ ($4) (-J‘u a(2) &) P.S. 

16x10 
16x10 
16x 10 
16x10 
16x10 
16x10 
16x 10 
16 x 10 
16x10 
14x11 

NT= 13 
NT= 12 
16x10 
16x10 
16x 10 

12 25 0.363 
12 33 0.401 
12 41 0.415 
14 25 0.443 
14 33 0.487 
14 41 0.504 
16 25 0.425 
16 33 0.468 
16 41 0.484 
16 41 0.492 
16 41 0.476 
16 41 0.485 
12 EXT 0.428 
14 EXT 0.518 
16 EXT 0.498 

- 77.764 0.374 
- 77.907 0.377 
- 77.953 0.388 
- 77.757 0.421 
- 77.891 0.441 
- 77.934 0.460 
- 77.756 0.407 
- 77.890 0.424 
- 77.933 0.443 
- 77.927 0.452 
- 77.934 0.436 
- 77.930 0.443 
- 77.989 0.431 
- 77.967 0.522 
- 77.966 0.502 

- 75.938 0.2856 
- 76.798 0.2861 
-77.214 0.2863 
-75.919 0.2855 
- 76.782 0.2860 
-77.197 0.2862 
-75.917 0.2855 
- 76.780 0.2860 
-17.196 0.2862 
-77.190 0.2862 
-77.197 0.2862 
-77.194 0.2862 
- 77.998 0.2863 
- 77.975 0.2863 
- 77.975 0.2863 

a All calculations have Ta = 24000, n = 0.77, c( = 3.13, p = 0, and llz = 3. 12c4) = &‘I + id4) is the com- 
puted eigenvalue with the fourth-order correction. 1 w = cF) + io(z) is the computed eigenvalue without 
the correction. EXT means the value obtained by Richardson extrapolation; NT= 13 refers to the trun- 
cation scheme (3.3). 
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MxN NX NZ m (rw w(4) P.S. 

16x 10 12 41 3 0.56 - 105.18 0.2417 
16x 10 13 41 3 0.41 - 105.06 0.2414 
16x 10 14 41 3 0.51 - 105.04 0.2414 
16 x 10 15 41 3 0.60 - 105.07 0.2415 
16 x 10 16 41 3 0.59 - 105.11 0.2416 
16x10 16 33 3 0.57 - 105.02 0.2414 
16x 10 16 25 3 0.53 - 104.73 0.2407 
14x 11 16 41 3 0.47 - 105.04 0.2414 

NT= 13 16 41 3 0.43 - 105.10 0.2415 
NT= 12 16 41 3 0.64 - 105.10 0.2415 
16x10 16 EXT 3 0.62 - 105.19 0.2418 
16x10 15 49 1 - 2.72 -33.41 0.2306 
16 x 10 15 60 1 -2.82 - 33.46 0.2307 
16x10 16 49 1 -2.76 - 33.40 0.2303 
16 x 10 16 60 1 -2.85 -33.45 0.2306 
16x 10 16 EXT 1 -2.93 -33.48 0.2309 
14x11 16 60 1 -3.03 -33.60 0.2316 

NT= 13 16 60 1 - 3.05 - 33.67 0.2321 
NT= 12 16 60 1 -2.75 -33.38 0.2301 

a All calculations have Tu = 48,000, n = 0.73, do = 3.13, p = 0. J.(4) = crc4) + k#) is the eigenvalue with 
the fourth-order correction. EXT means the value obtained by Richardson extrapolation; NT= 13 refers 
to the truncation scheme (3.3). 

TABLE V” 

MxN NX NZ m o(4) w(4) P.S. 

16 x 10 !2 41 3 1.13 - 142.42 0.2185 
16 x 10 13 41 3 0.52 - 143.40 0.2200 
I6 x 10 14 41 3 0.14 - 144.18 0.2212 
16 x 10 15 41 3 0.18 - 143.63 0.2203 
16x10 16 41 3 0.43 - 143.65 0.2204 
16x 10 17 41 3 0.42 - 143.81 0.2206 
16x 10 18 41 3 0.43 - 143.85 0.2207 
16x 10 16 33 3 0.37 - 143.39 0.2200 
16x 10 16 25 3 0.25 - 142.63 0.2185 
16x10 16 EXT 3 0.48 - 143.87 0.2207 
14x11 16 41 3 -0.72 - 142.19 0.2181 

NTx 13 16 41 3 -0.52 - 142.68 0.2189 
NTx 12 16 41 3 0.02 - 143.20 0.2197 

a All calculations have Ta = 96,000, q = 0.71, do = 3.13, p = 0. 1c4) = ac4) + im(“) is the eigenvalue with 
the fourth-order correction. EXT means the value obtained by Richardson extrapolation; NT= 13 refers 
to the truncation scheme (3.3). 
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TABLE VI” 

Ta m v a al Error 

24,000 3 0.11 0.498 - 77.968 * 0.005 
48,000 3 0.73 0.57 - 105.14 & 0.03 
48,000 1 0.13 j - 3.04 -33.61 * 0.05 
96,000 3 0.71 -0.06 - 143.22 +0.10 

a Best estimates for the eigenvalues at selected points with d( = 3.13 and p = 0. The error estimate refers 
to both 0 and UI. 

infinite expansions, and to give high-accuracy eigenvalues for a small number of 
selected points. A much fuller coverage of the parameter s,pace is given in [ 161. As 
test points we have chosen values of Ta and yl near the stability boundary, with a 
large variation in Ta. In Table II we give results from the SS method described in 
Section 4(a). In Tables III, IV, and V we give results derived from the SF method 
discussed in Section 4(b). These results are based on a number of different trun- 
cations, allowing us to estimate errors. In Table VI we give the best estimates and 
probable errors for a few particular cases to help calibrate other programs. For this 
purpose the constraint (4.3) has been relaxed. 

The first of the two points examined with the fully spectral SS method is at 
Ta = 12,000, 4 = 0.78, CI = 3.13, and ,B = 0. The disturbance examined is m = 3, which 
is the most unstable at these parameter values. This is also true for the second point 
examined, at Ta = 24,000, r = 0.77, M = 3.13, and p= 0. The results are listed in 
Table II. Truncation errors in the real and imaginary parts of the eigenvalue are of 
similar absolute magnitude. Given the constraint (4.3), set by storage and time con- 
siderations, to estimate errors we find the value of 1 on the basis of a number, n, of 
different truncations and look at the dispersion 

(5.1) 

where &, is the mean of the calculated eigenvalues. Applying this to the values 
found in Table II, we find that for the point at Ta = 12,000, L, = -0.36-59.581’ and 
S is 0.14; at Ta = 24,000, A, = 0.31-78.07i and S = 0.90. These results are consistent 
with the eigenvalues computed by the more accurate SF method described in Sec- 
tion 4(b), if we interpret the dispersion, S, as the estimated truncation error. Note 
that the dispersion, S, has increased very substantially with Ta. Although the boun- 
dary layer arguments at the end of Section 3 indicated that the number of expan- 
sion functions required to maintain constant accuracy increases at a comparatively 
modest rate, the fast rate of convergence of the Chebyshev and Fourier series means 
that S is a very sensitive function of M and N. In consequence, where the constraint 
(4.3) is operative, the dispersion, S, is a rapidly increasing function of Ta. If we wish 
to keep S constant, we need N- Tati and M-Tat/‘; with computational time 
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increasing as M3N3, to keep S constant computational time must increase as Tca9/’ 
or Re914. 

It is of interest to know what errors are likely to occur in Ta, as a result of errors 
in the eigenvalue. This depends on the values of (l/Tu)(lJTa/i30). At the points in 
the tables corresponding to 24,000, 48,000, and 96,000, (l/Tu)(~Ta/&~) is 
approximately 0.46, 0.37, and 0.63, respectively. But away from ~~0.75 the values 
of (l/Ta)(aTa/&) are generally considerably smaller. 

For the SF method of Section 4(b) we can identify three distinct sources of trun- 
cation error. First, the finite truncation M x N used in the axisymmetric Taylor vor- 
tex calculation; second, the finite number of Chebyshev polynomials in the radial 
direction, NX; and, third, the finite number of mesh points used in the z-direction. 
To avoid confusion with the truncation parameters for the axisymmetric problem, 
we denote the truncation parameter for the Chebyshev polynomials by NX (so 
number of polynomials used is NXf 1) and the number of mesh points by NZ. In 
Tables III, IV, and V we have varied each of these three factors separately in order 
to estimate the scatter as the truncation parameters are varied, and hence estimate 
the errors in the eigenvalues. 

To investigate the errors due to finite NZ, we keep M x N and NX constant, and 
vary only NZ. The results of these tests show that the fourth-order corrections give 
a substantially more accurate eigenvalue than the uncorrected second-order results. 
To achieve full fourth-order convergence, however, we need NZ greater than 41; the 
results from Tables III, IV, and V indicate a rate of convergence nearer h3 than hC. 
Full fourth-order convergence can be obtained at values of the Taylor num 
lower than 24,000 with values of NZ around 41 or by increasing NZ at the higher 
Taylor numbers. We also include in Tables III, IV, and V the results of Richardson 
extrapolation based on fourth-order extrapolation of the NZ= 33 and 41 pair. 
When investigating the parameter space, it is not practical to perform Richar 
extrapolation at every point, so we have also investigated the errors incurre 
leaving NZ constant at 41. 

The errors due to finite NX fall off very rapidly as NX increases, but they are 
amenable to Richardson extrapolation. The best we can do is to vary NX 
estimate the variation in the eigenvalue. Similar considerations apply to the errors 
measured by having finite M x N. We note that here we have a constraint such as 
(3.4) to contend with. 

The results in Table III are consistent with fourth-order convergence for the 
corrected eigenvalues A(4) = oc4) + iuc4) and second-order convergence for the 
uncorrected eigenvalues ;1 c2) = oc2) + io(‘). Similar behaviour holds for the other 
points tested. At Ta = 24,000, if we hold NX and NZ constant at 16 and 41, the 
scatter over the four Taylor vortex truncations is 0.006. At Tea =48,000 this has 
risen to 0.09 and at Ta = 96,000 it is 0.7. As we might expect, the increase ih the 
error is as steep as in the SS eigenvalue method of Section 4(a). The error due to 
the NX truncation is about 0.02 at Ta = 24,000, 0.05 at Ta = 48,000, and about 0.2 
at Ta = 96,000 when NX= 16. With NZ = 41, the error due to finite NZ is about 
0.03 at Ta=24,000, 0.109 at Tu=48,000, and 0.25 at Ta=96,000. 
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The m = 1 mode results in Table IV show that this mode is more difficult to find 
accurately than the m = 3 mode: in particular it requires greater resolution in the z- 
direction. The corresponding errors are therefore somewhat greater. 

In Table VI we give the best estimates of the eigenvalues for the cases examined 
here, together with estimates of the errors. In deriving these results we have aban- 
doned the storage constraint (4.3). Values of M x N up to 16 x 14 have been used, 
with NX up to 16 and NZ extrapolated to infinity. 

The typical CPU time taken on the 370/168 to find the axisymmetric Taylor vor- 
tices with Mx N at 16 x 10 was about 5 minutes; for the perturbations with 
NXx NZ= 16 x 41 the typical time was about 7 minutes. At NX= 16, this time 
increased slightly less rapidly than NX3, the theoretical asymptotic value as 
NX-t co. The time is linear with NZ. As is indicated by these figures, the principal 
source of error for Ta>40,000 is in the axisymmetric Taylor vortex calculation. 
Because of its poor asymptotic behaviour, this becomes increasingly true as the 
Taylor number increases. We note, by comparison with Table I, that the relative 
errors in the eigenvalues are considerably higher than those in the torque, which is 
known to be a relatively insensitive measure of the accuracy of a Taylor vortex 
program (Rogers and Beard [31]). However, the present programs can find eigen- 
values to about 1% accuracy up to Tar 100,000, and to better than 0.1% accuracy 
for Ta<25,000 within the stated machine resources. 

6. CONCLUSIONS 

For low Taylor numbers (Tad 5TacIi,) the fully spectral methods (SS type) are 
undoubtedly superior to any other method known to the author for this type of 
problem, when there are neither boundary layers nor singularities in the flow. This 
applies to axisymmetric nonlinear calculations of Taylor vortex flow and especially 
to the resolution of the stability problem, where the fully spectral methods give a lot 
of information relatively cheaply. However, as the Taylor number increases, and 
liner structures develop in the flow, the fully spectral methods begin to lose their 
great advantage. Although the number of spectral functions required increases less 
rapidly than the number of finite difference points as the Taylor number increases, 
this is more than outweighed by the penalty incurred by inverting full matrices 
rather than sparse matrices. On the other hand, using linite difference methods in 
both directions is not effective for this problem, as the price paid to ensure 
numerical stability is too great: we found here that a mixed spectral-finite difference 
approach gave the best results at high Taylor number. 

For the methods described in Section 4, the break-even point between fully spec- 
tral and mixed SF methods was at about Ta- lOTa,,i,. However, this break-even 
point is dependent on both the budget available and the accuracy required. Some 
indication of the budget and accuracy used for this study can be obtained from Sec- 
tion 5. At given Taylor number spectral methods have superior convergence proper- 
ties to finite difference methods. In consequence, if higher accuracy is demanded 
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(and a higher budget allowed) fully spectral methods will be favoured, and the 
break-even point will rise somewhat above lOTa,,,. 

In order to get high-accuracy eigenvalues it is necessary to have very high 
accuracy axisymmetric Taylor vortices to perturb. The results indicate that the 
main source of error in the eigenvalues is now in this nonlinear calculation when 
the SF method is used for the stability. However, the use of the methods described 
here greatly extends the range of parameter space compared to that which can be 
covered using the traditional fully spectral methods. 
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